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Abstract Retrieving a memory can modify its influence on subsequent behavior. We develop a

computational theory of memory modification, according to which modification of a memory trace

occurs through classical associative learning, but which memory trace is eligible for modification

depends on a structure learning mechanism that discovers the units of association by segmenting

the stream of experience into statistically distinct clusters (latent causes). New memories are

formed when the structure learning mechanism infers that a new latent cause underlies current

sensory observations. By the same token, old memories are modified when old and new sensory

observations are inferred to have been generated by the same latent cause. We derive this

framework from probabilistic principles, and present a computational implementation. Simulations

demonstrate that our model can reproduce the major experimental findings from studies of

memory modification in the Pavlovian conditioning literature.

DOI: 10.7554/eLife.23763.001

Introduction
In both humans and animals, memory retrieval is a significant learning event (Dudai, 2012;

Roediger and Butler, 2011; Spear, 1973). A memory’s strength and content can be modified imme-

diately after retrieval, and this malleability is often more potent than new learning without retrieval.

While this phenomenon is well-documented, its underlying mechanisms remain obscure. Does

retrieval render the contents of the memory trace modifiable, does it affect the future accessibility of

the memory trace, or both?

We develop a computational theory that begins to address these questions. Central to our theory

is the idea that memory is inferential in nature: Decisions about when to modify an old memory or

form a new memory are guided by inferences about the latent causes of sensory data

(Gershman et al., 2010, 2014, 2015). Memories contain statistical information about inferred latent

causes (when they are likely to occur, what sensory data they tend to generate). These statistics are

retrieved and updated whenever a previously inferred latent cause is believed to have generated

new sensory data. Conditions that promote the retrieval of a memory are, according to this account,

precisely the conditions that promote the inference that the same previously inferred latent cause is

once again active. If no previously inferred latent cause adequately predicts the current sensory

data, then a new memory is formed. Thus, memory modification is intimately connected to the pro-

cess of latent structure learning. We formalize this idea as a probabilistic model, and then demon-

strate its explanatory power by simulating a wide range of post-retrieval memory modification

phenomena.

It is important to clarify at the outset that our theory is formulated at an abstract, cognitive level

of analysis, in order to elucidate the design principles and algorithmic structure of memory. We do

not make strong claims about biologically plausible implementation in realistic neurons, although we
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speculate about such an implementation in the Discussion. Addressing this question is a logical next

step for this line of research.

Retrieval-induced memory modification in pavlovian conditioning
While retrieval-induced memory modification has been documented in a variety of domains—includ-

ing procedural (Censor et al., 2010; Walker et al., 2003), episodic (Hupbach et al., 2007;

Karpicke and Roediger, 2008), and instrumental (Lee et al., 2006b; Xue et al., 2012) learning—we

focus on Pavlovian conditioning, because it offers some of the most elementary and well-studied

examples. During the acquisition phase of a typical Pavlovian conditioning experiment, a motivation-

ally neutral conditional stimulus (CS; e.g., tone) is repeatedly paired with a motivationally reinforcing

unconditional stimulus (US; e.g., a shock). This repeated pairing results in the animal producing a

conditioned response (CR; e.g., freezing) to the CS. In a subsequent extinction phase, the CS is pre-

sented alone, and the animal gradually ceases to produce the CR. A final test phase, after some

delay, probes the animal’s long-term memory of the CS-US relationship by presenting the CS alone.

In a classic experiment using a Pavlovian fear conditioning task, Misanin et al. (1968) found that

electroconvulsive shock had no effect on a fear memory acquired a day previously; however, if the

animal was briefly reexposed to the acquisition cue prior to electroconvulsive shock, the animal sub-

sequently exhibited loss of fear. This finding was followed by numerous similar demonstrations of

post-retrieval memory modification (see Riccio et al., 2006, for a historical overview).

Contemporary neuroscientific interest in this phenomenon was ignited by Nader et al. (2000),

who showed that retrograde amnesia for an acquired fear memory could be produced by injection

eLife digest Our memories contain our expectations about the world that we can retrieve to

make predictions about the future. For example, most people would expect a chocolate bar to taste

good, because they have previously learned to associate chocolate with pleasure. When a surprising

event occurs, such as tasting an unpalatable chocolate bar, the brain therefore faces a dilemma.

Should it update the existing memory and overwrite the association between chocolate and

pleasure? Or should it create an additional memory? In the latter case, the brain would form a new

association between chocolate and displeasure that competes with, but does not overwrite, the

original one between chocolate and pleasure.

Previous studies have shown that surprising events tend to create new memories unless the

existing memory is briefly reactivated before the surprising event occurs. In other words, retrieving

old memories makes them more malleable. Gershman et al. have now developed a computational

model for how the brain decides whether to update an old memory or create a new one. The idea at

the heart of the model is that the brain will attempt to infer what caused the surprising event. The

reason the chocolate bar tastes unpalatable, for example, might be because it was old and had

spoiled. Every time the brain infers a new possible cause for a surprising event, it will create an

additional memory to store this new set of expectations. In the future we will know that spoiled

chocolate bars taste bad.

However, if the brain cannot infer a new cause for the surprising event – because, for example,

there appears to be nothing unusual about the unpalatable chocolate bar – it will instead opt to

update the existing memory. The next time we buy a chocolate bar, we will have slightly lower

expectations about how good it will taste. The dilemma of whether to update an existing memory or

create a new one thus boils down to the question: is the surprising event the consequence of a new

cause or an old one? This theory implies that retrieving a memory nudges the brain to infer that its

associated cause is once again active and, since this is an old cause, it means that the memory will

be eligible for updating.

Many experiments have been performed on the topic of modifying memories, but this is the first

computational model that offers a unifying explanation for the results. The next step is to work out

how to apply the model, which is phrased in abstract terms, to networks of neurons that are more

biologically realistic.

DOI: 10.7554/eLife.23763.002
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of a protein synthesis inhibitor (PSI) into the lateral nucleus of the amygdala shortly after reexposure

to the acquisition cue. Subsequent studies have provided a detailed neural and behavioral character-

ization of post-retrieval memory modification, describing a large cast of molecular mechanisms

(Tronson and Taylor, 2007) and several boundary conditions on its occurrence (Dudai, 2012;

Duvarci and Nader, 2004; Nader and Hardt, 2009). For instance, it has been shown that stronger

and older memories are harder to modify following retrieval (Suzuki et al., 2004), and that the mod-

ification is cue-specific (Doyère et al., 2007).

Importantly, there is now evidence that memory modification can be obtained with a purely

behavioral procedure. In particular, Monfils et al. (2009) and Schiller et al. (2010) showed, in rats

and in humans, that reexposing a subject to the cue shortly (10 min to 1 hr) before extinction training

is sufficient to reduce conditioned responding at test. This finding presents a deep puzzle for asso-

ciative learning theory, since the cue reexposure is operationally an extinction trial and hence it is

unclear what makes it special. One of our main goals will be to unravel this puzzle, showing how cue

reexposure influences probabilistic beliefs about latent causes such that they are eligible for updat-

ing by the subsequent extinction training.

This body of work has traditionally been understood as probing mechanisms of ‘reconsolidation’

(Nader et al., 2000; Przybyslawski and Sara, 1997), under the hypothesis that memory retrieval

renders the memory trace unstable, setting in motion a protein-synthesis-dependent process of syn-

aptic stabilization. This process is thought to resemble initial post-learning consolidation, whereby a

newly encoded memory gradually becomes resistant to disruption. However, this terminology is

heavily theory-laden, and the explanatory adequacy of both consolidation and reconsolidation have

been repeatedly questioned (Ecker et al., 2015; Miller and Springer, 1973, Miller and Matzel,

2006). We therefore avoid using this terminology to refer to empirical phenomena, favoring instead

the less tendentious ‘post-retrieval memory modification.’ The relationship of our work to consolida-

tion and reconsolidation will be revisited in the Discussion.

Before addressing the key memory modification phenomena, we first situate them within a larger

set of issues in Pavlovian conditioning. These problems provide the starting point for our new

theory.

Memory and associative learning theory
Classical theories of associative learning, such as the Rescorla-Wagner model (Rescorla and Wag-

ner, 1972), posit that over the course of acquisition in a Pavlovian conditioning experiment, the ani-

mal learns an association between the CS and the US, and the magnitude of the CR reflects the

strength of this association. The main weakness of the Rescorla-Wagner model, and many similar

models (Pearce and Bouton, 2001), is its prediction that presenting the CS repeatedly by itself

(‘extinction’) will erase the CS-US association formed during acquisition—in other words, the model

predicts that extinction is unlearning. It is widely accepted that this assumption, shared by a large

class of models, is wrong (Delamater, 2004; Dunsmoor et al., 2015; Gallistel, 2012).

Bouton (2004) reviewed a range of conditioning phenomena in which putatively extinguished

associations are recovered in a post-extinction test phase. For example, simply increasing the time

between extinction and test is sufficient to increase responding to the extinguished CS, a phenome-

non known as spontaneous recovery (Pavlov, 1927; Rescorla, 2004). Another example is reinstate-

ment: reexposure to the US alone prior to test increases conditioned responding to the CS

(Bouton and Bolles, 1979b; Pavlov, 1927; Rescorla and Heth, 1975). Conditioned responding can

also be recovered if the animal is returned to the acquisition context, a phenomenon known as

renewal (Bouton and Bolles, 1979a).

Bouton (1993) interpreted the attenuation of responding after extinction in terms of the forma-

tion of an extinction memory that competes for retrieval with the acquisition memory; this retroac-

tive interference can be relieved by a change in temporal context or the presence of retrieval cues,

thereby leading to recovery of the original CS (see also Miller and Laborda, 2011). Central to

retrieval-based accounts of conditioning is the idea that the associations learned during acquisition

are linked to the spatiotemporal context of the acquisition session, and as a result they are largely

unaffected by extinction. Likewise, extinction results in learning that is linked to the spatiotemporal

context of the extinction session. The manipulations reviewed above are hypothesized to either rein-

state elements of the acquisition context (e.g., renewal, reinstatement) or attenuate elements of the

extinction context (e.g., spontaneous recovery). These modifications of contextual elements
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effectively change the accessibility of particular associative memories. According to this view, modifi-

cation of the acquisition memory (in particular, its accessibility) should occur when the acquisition

and extinction phases are linked to the same spatiotemporal context.

The major stumbling block is that it is unclear what should constitute a spatiotemporal context:

What are its constitutive elements, under what conditions are they invoked, and when should new

elements come into play? Existing theories have operationalized context in several (not mutually

exclusive) ways: as observable stimuli [e.g., the conditioning box; Bouton, 1993], recent stimulus

and response history (Capaldi, 1994), or a random flux of stimulus elements (Estes, 1950,

1955). However, no computational implementation has been shown to capture the full range of

memory modification phenomena that we discuss below.

Results

A latent cause theory
In this section, we develop a latent cause theory of Pavlovian conditioning that treats context (opera-

tionalized as the history of sensory data) as the input into a structure learning system, which outputs

a parse of experience into latent causes—hypothetical entities in the environment that govern the

distribution of stimulus configurations (Courville, 2006; Courville et al., 2006; Gershman et al.,

2010; Gershman and Niv, 2012; Gershman et al., 2013a, 2015; Soto et al., 2014). Like the

Rescorla-Wagner model (Figure 1A), our theory posits the learning of CS-US associations, but these

associations are modulated by the animal’s probabilistic beliefs about latent causes. New causes are

inferred when existing causes fail to accurately predict the currently observed CS-US contingency

Figure 1. Model schematic. (A) The associative structure underlying the Rescorla-Wagner model. The associative strength between a conditioned

stimulus (CS) and an unconditioned stimulus (US) is encoded by a scalar weight, w, that is updated through learning. (B) The associative structure

underlying the latent-cause-modulated model. As in the Rescorla-Wagner model, associative strength is encoded by a scalar weight, but in this case

there is a collection of such weights, each paired with a different latent cause. The US prediction is a linear combination of weights, modulated by the

posterior probability that the corresponding latent cause is active. Alternatively, this model can be understood as consisting of three-way associations

between the latent cause, the CS and the US. (C) A high-level schematic of the computations in the latent-cause model. Associative learning, in which

the associative weights are updated (using the delta rule) conditional on the latent-cause posterior, alternates with structure learning, in which the

posterior is updated (using Bayes’ rule) conditional on the weights.

DOI: 10.7554/eLife.23763.003
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(Figure 1B). This allows the theory to move beyond the ‘extinction=unlearning’ assumption by posit-

ing that different latent causes are inferred during acquisition and extinction, and thus two different

associations are learned (see also Redish et al., 2007). Memory modification arises when CS reexpo-

sure provides evidence to the animal that the latent cause assigned to the acquisition phase is once

again active, making that cause’s associations eligible for updating (or disruption by amnestic agents

like PSIs).

The theory consists of two interacting sub-systems (Figure 1C): an associative-learning system

updates a set of CS-US associations using a delta rule (Rescorla and Wagner, 1972; Sutton and

Barto, 1998; Widrow and Hoff, 1960), while a structure learning system updates an approximation

of the posterior distribution over latent causes using Bayes’ rule. It is useful to envision the associa-

tive-learning system as almost identical to the Rescorla-Wagner model, with the key difference that

the system can maintain multiple sets of associations between any CS-US pair (one for each latent

cause; Figure 1B) instead of just a single set. Given a particular CS configuration (e.g., tone in a red

box), the multiple associations are combined into a single prediction of the US by averaging the US

prediction for each cause, weighted by the posterior probability of that cause being active. This pos-

terior probability takes into account not only the conditional probability of the US given the CS con-

figuration, but also the probability of observing the CS configuration itself. In the special case that

only a single latent cause is inferred by the structure learning system, the associative learning sys-

tem’s computations are almost identical to the Rescorla-Wagner model (see the Materials and

methods).

To infer the posterior distribution over latent causes, the structure learning system makes certain

assumptions about the statistics of latent causes (the animal’s ‘internal model’). Informally, the main

assumptions we impute to the animal are summarized by two principles:

. Simplicity principle: sensory inputs tend to be generated by a small (but possibly unbounded)
number of latent causes. The simplicity principle, or Occam’s razor, has appeared throughout
cognitive science in many forms (Chater and Vitányi, 2003; Gershman and Niv, 2013). We
use an ‘infinite-capacity’ prior over latent causes that, while preferring a small number of
causes, allows the number of latent causes to grow as more data are observed
(Gershman and Blei, 2012).

. Contiguity principle: the closer two events occur in time, the more likely it is that they were
generated by the same latent cause. In other words, latent causes tend to persist in
time. Spatial proximity also likely plays an important role in latent causal inference, but since
this variable has not been thoroughly investigated in the memory modification literature, we
omit it here for simplicity. See Soto et al. (2014) for an exploration of spatial proximity within
a latent cause framework.

When combined with a number of auxiliary assumptions, these principles specify a complete gen-

erative distribution over stimulus configurations and latent causes—the animal’s internal model. We

now describe the theory in greater technical detail. In the section ‘Understanding Extinction and

Recovery,’ we walk through a simple example with a single CS.

The internal model
Our specification of the animal’s internal model consists of three parts: (1) a distribution over latent

causes, (2) a conditional distribution over CS configurations given latent causes, and (3) a conditional

distribution over the US given the CS configuration. We now introduce these formally, starting from

(2) and (3) and ending with (1). Let xt ¼ fxt1; . . . ; xtDg denote the D-dimensional CS configuration at

time t, and let rt denote the US intensity at time t. In most of our simulations, we treat the US as

binary (e.g., representing the occurrence or absence of a shock in Pavlovian fear conditioning). The

distribution over rt and xt is determined by a latent cause zt. Specifically, the CS configuration is

drawn from a Gaussian distribution:

Pðxtjzt ¼ kÞ ¼
Y

D

d¼1

Nðxtd;�kd;s
2

xÞ; (1)

where �kd is the expected intensity of the dth CS given cause k is active, and s2

x is its variance. A

Gaussian distribution was chosen for continuity with our recent modeling work (Soto et al., 2014;

Gershman et al., 2014); most of our simulations will for simplicity use binary stimuli see [for a latent
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cause theory based on a discrete stimulus representation] (Gershman et al., 2010). We assume a

zero-mean prior on �kd with a variance of 1, and treat s2

x as a fixed parameter (see the Materials and

methods). Similarly to the Kalman filter model of conditioning (Kakade and Dayan, 2002;

Kruschke, 2008), we assume that the US is generated by a weighted combination of the CS intensi-

ties corrupted by Gaussian noise, where the weights are determined by the latent cause:

Pðrtjzt ¼ kÞ ¼N rt;
PD

d¼1wkdxtd;s
2

r

� �

: (2)

Finally, according to the animal’s internal model, a single latent cause is responsible for all the

events (CSs and USs) in any given trial. We will call this latent cause the active cause on that trial. A

priori, which cause is the active latent cause on trial t, zt, is assumed to be drawn from the following

distribution:

Pðzt ¼ kjz1:t�1Þ /

P

t0<tKðtðtÞ� tðt0ÞÞI½zt0 ¼ k� if k�K (i.e., k is an old cause)

a otherwise (i.e., k is a new cause)

�

(3)

where I½�� ¼ 1 when its argument is true (0 otherwise), tðtÞ is the time at which trial t occurred, K is a

temporal kernel that governs the temporal dependence between latent causes, and a is a ‘concen-

tration’ parameter that governs the probability of a completely new latent cause being responsible

for the current trial. Intuitively, this distribution allows for an unlimited number of latent causes to

have generated all observed data so far (at most t different latent causes for the last t trials), but at

the same time, it is more likely that fewer causes were active. Importantly, due to the temporal ker-

nel, the active latent cause on a particular trial is likely to be the same latent cause as was active on

other trials that occurred nearby in time.

This infinite-capacity distribution over latent causes imposes the simplicity principle described in

the previous section—a small number of latent causes, each active for a continuous period of time, is

more likely a priori than a large number of intertwined causes. The distribution defined by Equa-

tion 3 was first introduced by Zhu et al. (2005) in their ‘time-sensitive’ generalization of the Chinese

restaurant process (Aldous, 1985). It is also equivalent to a special case of the ‘distance dependent’

Chinese restaurant process described by (Blei and Frazier, 2011). Variants of this distribution have

been widely used in cognitive science to model probabilistic reasoning about combinatorial objects

of unbounded cardinality (e.g., Anderson, 1991; Sanborn et al., 2010; Collins and Frank, 2013;

Goldwater et al., 2009; Gershman and Niv, 2010). See Gershman and Blei (2012) for a tutorial

introduction.

For the temporal kernel, we use a power law kernel:

KðtðtÞ� tðt0ÞÞ ¼
1

tðtÞ� tðt0Þ
; (4)

with Kð0Þ ¼ 0. While other choices of temporal kernel are possible, our choice of a power law kernel

was motivated by several considerations. First, it has been argued that forgetting functions across a

variety of domains follow a power law (Wixted and Ebbesen, 1991; Wixted, 2004), and similar

ideas have been applied to animal foraging (Devenport et al., 1997). While the temporal kernel is

not literally a forgetting function, it implies that the CR strength elicited by a CS will decline as a

function of the acquisition-test interval, because the probability that the acquisition and test trials

were generated by different latent causes increases over the same interval. Thus, the temporal ker-

nel induces a particular forgetting function that (all other things being equal) shares its shape.

Second, the power law kernel has an important temporal compression property, illustrated in Fig-

ure 2. Consider two timepoints, t1<t2, separated by a fixed temporal interval, tðt2Þ � tðt1Þ, and a third

time point, t3>t2, separated from t2 by a variable interval, tðt3Þ � tðt2Þ. In general, because t3 is closer

to t2 than to t1, the latent cause that generated t2 is more likely to have also generated t3, as com-

pared to the latent cause that generated t1 having generated t3 (the contiguity principle). However,

this advantage diminishes over time, and asymptotically disappears: as t1 and t2 both recede into the

past relative to t3, they become (almost) equally distant from t3, and it is equally likely that one of

their causes also caused t3.
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This completes our description of the animal’s internal model. In the next section, we describe

how an animal can use this internal model to reason about the latent causes of its sensory inputs and

adjust the model parameters to improve its predictions.

Associative and structure learning
In our framework, two computational problems confront the animal: (1) associative learning, that is,

estimation of the model parameters (specifically, the associative weights, W) by maximizing the like-

lihood of the observed data given their hypothetical latent causes; and (2) structure learning, that is,

determining which observation was generated by which latent cause, by computing the posterior

probability for each possible assignment of observations to latent causes. One practical solutions is

to alternate between these two learning processes. In this case, the learning process can be under-

stood as a variant of the expectation-maximization (EM) algorithm (Dempster et al., 1977;

Neal and Hinton, 1998), that has been suggested to provide a unifying framework for understand-

ing cortical computation (Friston, 2005). We note at the outset that we do not necessarily think the

brain is literally implementing these equations; more likely, the brain implements computations that

have comparable functional properties. The question of neural mechanisms implementing these

computations is taken up again in the Discussion. However, serial alternation of these two processes

will be key to explaining the Monfils-Schiller findings.

For our model, the EM algorithm takes the following form (see Materials and methods for a deri-

vation): after each observation, the model alternates between structure learning (the E-step, in which

the posterior distribution over latent causes is updated assuming the current weights associated

with the different causes are the true weights) and associative learning (the M-step, in which the

weights for each cause are updated using a delta rule, conditional on the posterior over latent

causes).

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65
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0.75
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0.85

0.9

0.95

1

Memory age, τ(t
3
)−τ(t

2
)

P
(z

3
=

z
2
)

Figure 2. Temporal compression with the power law kernel. We assume that t1 was generated by cause z1, two timepoints later t2 was generated by

cause z2, and a variable number of timepoints later t3 was generated by cause z3. To illustrate the time compression property we have assumed that the

probability of a new cause is 0 (i.e., a ¼ 0) so inference at t3 is constrained to one of the previous causes. As the temporal distance between tðt3Þ and

the time of the previous trial tðt2Þ increases, that is, as the memory for t2 recedes into the past, the probability of trial three being generated by either

of the two prior latent causes becomes increasingly similar.

DOI: 10.7554/eLife.23763.004
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E-step : qnþ1tk ¼ Pðzt ¼ kjD1:t;W
nÞ (5)

M-step :wnþ1
kd ¼wn

kdþhxtdd
nþ1
tk (6)

for all latent causes k and features d, where n indexes EM iterations, h is a learning rate and

dnþ1tk ¼ qnþ1tk ðrt �
P

dwkdxtdÞ (7)

is the prediction error at time t for latent cause k. The set of weight vectors for all latent causes at

iteration n is denoted by Wn, and the CS-US history from trial 1 to t is denoted by D1:t ¼ fX1:t;r1:tg,

where X1:t ¼ fx1; . . . ;xtg and r1:t ¼ fr1; . . . ; rtg. Note that the updates are performed trial-by-trial in an

incremental fashion, so earlier timepoints are not reconsidered.

Associative learning in our model (the M-step of the EM algorithm) is a generalization of the

Rescorla-Wagner model (see the Materials and methods for further details). Whereas in the

Rescorla-Wagner model there is a single association between a CS and the US (Figure 1A), in our

generalization the animal forms multiple associations, one for each latent cause (Figure 1B). The

overall US prediction is then a linear combination of the predictions of each latent cause, modulated

by the posterior probability distribution over latent causes, represented by q (see next section for

details). Associative learning proceeds by adjusting the weights using gradient descent to minimize

the prediction error.

Structure learning (the E-step of the EM algorithm) consists of computing the posterior probabil-

ity distribution over latent causes using Bayes’ rule:

Pðzt ¼ kjD1:t;W
nÞ ¼

PðD1:tjzt ¼ k;WnÞPðzt ¼ kÞ
P

jPðD1:tjzt ¼ j;WnÞPðzt ¼ jÞ
: (8)

The first term in the numerator is the likelihood, encoding the probability of the animal’s observa-

tions under the hypothetical assignment of the current observation to latent cause k, and the second

term is the prior probability of this hypothetical assignment (Equation 3), encoding the animal’s

inductive bias about which latent causes are likely to be active. As explained in the Materials and

methods, Bayes’ rule is in this case computationally intractable (due to the implicit marginalization

over the history of previous latent cause assignments, z1:t�1); we therefore use a simple and effective

approximation (see Equation 14). In principle, the posterior computation requires perfect memory

of all latent causes inferred in the past. Because temporally distal latent causes have vanishingly small

probability under the prior, they can often be safely ignored, though solving this problem more gen-

erally may require a truly scale-invariant memory (see Howard and Eichenbaum, 2013).

Because the E and M steps are coupled, the learning agent needs to alternate between them

(Figure 1C). We envision this process as corresponding to a kind of offline ‘rumination,’ in which the

animal continues to revise its beliefs even after the stimulus has disappeared, somewhat similar to

the ‘rehearsal’ process posited by Wagner et al. (1973). In the context of Pavlovian conditioning,

we assume that this rumination happens during intervals between trials, up to some maximum num-

ber of iterations (under the assumption that after a finite amount of time the animal will get dis-

tracted by something new and cease to ruminate on its past experience). In our simulations, we take

this maximum number to be 3, where each iteration takes a single timestep. While the qualitative

structure of the theory’s predictions does not depend strongly on this maximum number, we found

this to produce the best match with empirical data. The explanatory role of multiple iterations will

play a key role in explaining the Monfils-Schiller findings.

Conditioned responding
Given the learning model above, when faced with a configuration of CSs on trial t, the optimal pre-

diction of the US is given by its expected value, averaging over the possible latent causes according

to their posterior probability of currently being active:

~rt ¼E½rtjxt;D1:t�1� ¼
X

D

d¼1

xtd
X

k

wkdPðzt ¼ kjxt;D1:t�1;W
nÞ: (9)

Most earlier Bayesian models of conditioning assumed that the animal’s conditioned response is
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directly proportional to the expected US (e.g., Courville, 2006; Gershman and Niv, 2010;

Kakade and Dayan, 2002). In our simulations, we found that while Equation 9 generally agrees with

the direction of empirically observed behavior, the predicted magnitude of these effects was not

always accurate. One possible reason for this is that in fear conditioning the mapping from predicted

outcome to behavioral response may be nonlinear. Indeed, there is some evidence that freezing to a

CS is a nonlinear function of shock intensity (Baldi et al., 2004). We therefore use a sigmoidal trans-

formation of Equation 9 to model the conditioned response:

CR¼ 1�Fð�;~rt;lÞ; (10)

where Fð�;~rt ;lÞ is the Gaussian cumulative distribution function with mean ~rt and variance l. One

way to understand Equation 10 is that the animal’s conditioned response corresponds to its expec-

tation that the US is greater than some threshold, �. When l¼ s2

r (the US variance), Equation 10 cor-

responds precisely to the posterior probability that the US exceeds �:

CR¼ Pðrt > �jxt;D1:tÞ ¼

Z

¥

�

Pðrtjxt;D1:tÞdrt: (11)

In practice, we found that more accurate results could be obtained by setting l < s2

r . At a mecha-

nistic level, l functions as an inverse gain control parameter: smaller values of l generate more

sharply nonlinear responses (approaching a step function as l! 0). The parameter � corresponds to

the inflection point of the sigmoid.

Modeling protein synthesis inhibition
Many of the experiments on post-retrieval memory modification used PSIs administered shortly after

CS reexposure as an amnestic agent. We modeled PSI injections after trial t by decrementing all

weights according to: wk  wkð1� qtkÞ, that is, we decremented the weights for latent cause k

towards 0 in proportion to the posterior probability that cause k was active on trial t. As we elabo-

rate later, this is essentially a formalization of the trace dominance principle proposed by

Eisenberg et al. (2003): memories will be more affected by amnestic agents to the extent that they

control behavior at the time of treatment.

It is important to note here that the physiological effect of PSIs is a matter of dispute

(Routtenberg and Rekart, 2005; Rudy et al., 2006). For example, Rudy et al. (2006) have

observed that anisomycin causes apoptosis; Routtenberg and Rekart (2005) describe numerous

other effects of PSIs, including inhibition of negative regulators (which could actually increase protein

synthesis), catecholamine function, and possibly neural activity itself. We restrict ourselves in this

paper to exploring one possible pathway of action, but these other pathways merit further

modeling.

Understanding extinction and recovery
Before modeling specific experimental paradigms, in this section we lay out some general intuitions

for how our model deals with extinction and recovery. In previous work (Gershman et al., 2010), we

argued that the transition from acquisition to extinction involves a dramatic change in the statistics

of the animal’s sensory inputs, leading the animal to assign acquisition and extinction trials to differ-

ent latent causes. The result of this partitioning is that the acquisition associations are not unlearned

during extinction, and hence can be later recovered, as is observed experimentally (Bouton, 2004).

Thus, according to our model, the key to persistent reduction in fear is to finesse the animal’s sen-

sory statistics such that the posterior distribution over latent causes favors assigning both acquisition

and extinction phases to the same latent cause.

One way to understand the factors influencing the posterior distribution over latent causes is in

terms of prediction error, the discrepancy between what the animal expects and what it observes.

This term typically refers to a US prediction error (i.e., was the US predicted or not?), but our analysis

applies to CS prediction errors as well: in our framework, anything that is not expected under the

current latent cause evokes a prediction error.

The prediction error plays two roles in our model: it is an associative learning signal that teaches

the animal how to adjust its associative weights, and it is a segmentation signal indicating when a

new latent cause is active. When the animal has experienced several CS-US pairs during acquisition,
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it develops an expectation that is then violated during extinction, producing a prediction error.

Learning rules such as Rescorla-Wagner’s are ‘error-correcting’ as they modify associations or values

so as to reduce future prediction errors. In our model, however, the prediction error can be reduced

in two different ways: either by associative learning (e.g., unlearning the CS-US association) or by

structure learning (e.g., assigning the extinction trials to a new latent cause). Initially, the prior sim-

plicity bias towards a small number of latent causes favors unlearning, but persistent accumulation of

these prediction errors over the course of extinction eventually makes the posterior probability of a

new cause high. Thus, our framework recapitulates and formalizes the idea that standard acquisition

and extinction procedures eventually lead to the formation of two memories or associations, one for

CS-US and one for CS-noUS.

The trade-off between the effects of prediction errors on associative and structure learning is

illustrated in Figure 3. When prediction errors are small, the posterior probability of the acquisition

latent cause is high (leading to modification of the original memory) but the amount of CS-US weight

change is small as there is little discrepancy between what was predicted and what was observed; if

prediction errors are very large, the posterior probability of the acquisition latent cause is low (lead-

ing to formation of a new memory), and the change in the weight corresponding to the original

memory is again small. In theory, therefore, there should exist an intermediate ‘sweet spot’ for

extinction learning where the prediction errors are large enough to induce considerable weight

change but small enough to avoid inferring a new latent cause. Later we describe one behavioral

paradigm (the Monfils-Schiller paradigm) that achieves this sweet spot (see also Gershman et al.,

2013).
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Figure 3. Cartoon of the model’s predictions for fear extinction. The X-axis represents the size of the prediction

error during extinction, and the Y-axis represents the change (after learning) in the weight for US prediction for the

‘acquisition latent cause’ (i.e., the latent cause inferred by the animal during conditioning).
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To get a feeling for how the model’s response to prediction errors depends on previous experi-

ence, consider a simple conditioning paradigm in which a single CS has been paired N times

with the US (D1:N ¼ fxt ¼ 1; rt ¼ 1gNt¼1), with a fixed ITI (tðtÞ � tðt � 1Þ ¼ 1). Under most parameter set-

tings, this will result in all the acquisition trials being assigned to a single latent cause (hence we

ignore the cause subscript k in this example and refer to the single cause as the ‘acquisition latent

cause’). Now consider what happens when a single extinction trial (xNþ1 ¼ 1; rNþ1 ¼ 0) is presented.

The posterior over latent causes (Equation 5) is proportional to the product of 3 terms: (1) The prior

over latent causes, (2) the likelihood of the US, and (3) the likelihood of the CS. The third term plays

a negligible role, since the CS does not change across acquisition and extinction, and hence no CS

prediction error is generated. As N grows, the prior probability of the acquisition latent cause gener-

ating the extinction trial as well increases, due to the simplicity bias of the prior over latent causes.

However, associative learning of the weight vector counteracts this effect, since the US expectation,

and hence the size of the prediction error due to the absence of the US (encoded in the likelihood

term), also grows with N, asymptoting once the US prediction is fully learned. In particular, sensitivity

to the US prediction error increases as s2

r decreases (higher confidence in US predictions) and a

increases (weaker simplicity bias). Parameter-dependence is examined systematically in the next

section.

In order to understand some of the empirical phenomena described below, we must also explain

why spontaneous recovery of the CR after extinction occurs. In our model, this occurs because the

posterior probability of the acquisition cause increases as the extinction-test interval is lengthened,

due to the temporal compression property of the power law temporal kernel K that we chose. As

explained above, this kernel has the important property that older timepoints are ‘compressed’

together in memory: latent causes become more equiprobable under the prior as the time between

acquisition and test increases. A similar idea was used by Brown et al. (2007) in their model of epi-

sodic memory to explain recency effects in human list learning experiments. Thus, the advantage of

the extinction cause over the acquisition cause at test diminishes with the extinction-test interval.

One implication of this analysis is that spontaneous recovery should never be complete, since the

prior probability of the acquisition cause can never exceed the probability of the extinction cause

(though the ratio of probabilities increases monotonically towards one as the extinction-test interval

increases); this appears generally consistent with empirical data (Rescorla, 2004). There are a few

examples of seemingly complete spontaneous recovery (Quirk, 2002; Brooks and Bouton, 1993;

Bouton and Brooks, 1993). This is inconsistent with our theory and would require additional or dif-

ferent mechanisms, but it is currently unclear how common complete spontaneous recovery is, or

what factors determine its completeness.

Modeling post-retrieval memory modification
In this section, we show how our theory accounts for the basic data on post-retrieval memory modifi-

cation. We seek to capture the qualitative pattern of results, rather than their precise quantitative

form. We thus use the same parameter settings for all simulations (see Materials and methods),

rather than fitting the parameters to data for each particular case. The parameter settings were cho-

sen heuristically, but our results hold over a range of values.

Schafe and LeDoux (2000) showed that PSI administration immediately after the acquisition of a

fear memory disrupted the CR in a later test phase; no disruption was found if the PSI administration

was delayed. However, Nader et al. (2000) showed that re-exposing the animal to the CS prior to

delayed PSI administration resulted in disrupted CR. The reexposure failed to produce this disrup-

tion if the PSI administration was delayed relative to the reexposure.

These observations are reproduced by simulations of our model (Figure 4). The key idea is that

the latent cause inferred during the acquisition phase has high probability only after CS exposure

(either during acquisition itself or after reexposure). Since we hypothesize that PSIs disrupt the asso-

ciative weights tied to latent causes in proportion to their posterior probability (i.e., their degree of

‘activation’), the model correctly predicts that PSI administration will be ineffective when delayed.

As discussed in the previous section, these effects are parameter-dependent. The key parameters

of interest are the concentration parameter a and the US variance s2, which jointly determine sensi-

tivity to prediction errors. In Figure 5, we show how variations in these parameters affect the CR in

the Ret immediate condition of Nader et al. (2000). As s2 increases, sensitivity to the post-retrieval
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prediction error decreases, thereby reducing the probability that a new latent cause will be inferred;

this effect manifests as a reduced CR at test. The concentration parameter has a more complex

effect on the results: increasing a initially increases the CR at test by increasing the probability that

the post-retrieval trial is assigned to a new latent cause, but then decreases the CR at test due to

the fact that—for sufficiently high values of a—the test trial itself is assigned to an entirely new latent

cause.

These simulations suggest empirically testable predictions. For example, our earlier work on con-

text-dependent learning argued that young animals and animals with hippocampal lesions have

small values of a (Gershman et al., 2010). Thus, these animals should show stronger retrieval

effects. Other research has shown that individual differences in the propensity for generating latent

causes (captured by fitting a) can predict spontaneous recovery (Gershman and Hartley, 2015),

suggesting that these individual differences should also be predictive of post-retrieval memory mod-

ification. Although less work has been done linking parametric differences in US variance to memory

modification, recent work has argued that this parameter is encoded by striatal synapses expressing

D1 and D2 receptors (Mikhael and Bogacz, 2016). Thus, we expect that pharmacological

Figure 4. Simulation of post-retrieval memory modification. Top row shows a schematic of the experimental design (bell represents the tone CS,

lightning bolt represents the shock US, syringe represents the injection of a protein synthesis inhibitor), with a conditioning! extinction! test

structure. Bottom row shows model predictions in the test phase. (A) PSIs disrupt a fear memory (measured here through a freezing CR) when delivered

immediately after the acquisition phase, but not when delivered after a delay. Red circles show proportion freezing of rats in the study by Schafe and

LeDoux (2000). (B) The delayed PSI administration is effective at disrupting the memory following reexposure to the CS (Ret). The effectiveness of this

procedure is diminished if the PSI administration is delayed relative to reexposure (Ret delayed). Red circles show proportion freezing of rats in the

study by Nader et al. (2000).

DOI: 10.7554/eLife.23763.006
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manipulations and individual variation of these receptors should be systematically related to post-

retrieval memory modification.

We next explore several boundary conditions on post-retrieval memory modification see for a

review (Nader and Hardt, 2009). Our goal is to show that these boundary conditions fall naturally

out of our framework for Pavlovian conditioning.

The ’trace dominance’ principle
Using fear conditioning in the Medaka fish, Eisenberg et al. (2003) found that administering a PSI

after a single reexposure to the CS (i.e., a single extinction trial) caused retrograde amnesia for the

reactivated fear memory. In contrast, administering the PSI after multiple reexposures caused retro-

grade amnesia for the extinction memory: high recovery of fear was observed in a test on the follow-

ing day. Similar results have been obtained with mice (Suzuki et al., 2004), rats (Lee et al., 2006a),

and the crab Chasmagnathus (Pedreira and Maldonado, 2003). A ‘trace dominance’ principle inter-

pretation of these data suggests that the extent of reexposure to the CS determines the dominance

of a memory. In other words, the acquisition memory is initially dominant during reexposure (and

hence vulnerable to disruption), but with repeated CS-alone exposure the extinction memory

becomes dominant.

This is also seen in our theory: limited reexposure (operationalized by a single CS presentation)

favors assignment of the reexposure trial to the acquisition latent cause. This follows from the sim-

plicity bias in the latent cause prior: in the absence of strong evidence to the contrary, new observa-

tions are preferentially assigned to previously inferred causes. However, with more trials of

extinction (e.g., two or more CS presentations), persistent prediction errors accrue, favoring assign-

ment of these trials to a new latent cause (the ‘extinction’ cause). This logic leads to model predic-

tions consistent with the empirical data (Figure 6A). Note that because ours is a trial-level model,
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Figure 5. Parameter sensitivity in the Ret condition.
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we cannot explicitly manipulate stimulus duration, so we use the number of presentations as a

proxy.

Memory age
By manipulating the interval between acquisition and reexposure, Suzuki et al. (2004) demonstrated

that the amnestic effects of PSI injection were more pronounced for young memories (i.e., short

intervals). Winters et al. (2009) found a similar effect with the NMDA receptor antagonist MK-801

administered prior to reexposure, and Milekic and Alberini (2002) demonstrated this effect in an

inhibitory avoidance paradigm. Alberini (2007) has reviewed several other lines of evidence for the

age-dependence of reconsolidation. These findings can also be explained by our model: old obser-

vations are less likely (under the prior) to have been generated by the same latent cause as recent

observations. Thus, there is an inductive bias against modifying old memory traces. Figure 6B shows

simulations of the Suzuki paradigm, demonstrating that our model can reproduce this pattern of

results.

Memory strength
In another experiment, Suzuki et al. (2004) showed that strong memories are more resistant to

updating (see also Wang et al., 2009). Specifically, increasing the number of acquisition trials led to

persistent fear even after reexposure to the CS and PSI injection. In terms of our model, this phe-

nomenon reflects the fact that for stronger memories, because the associative weight is large, the

prediction error is large, which causes the model to infer a new cause for the CS-alone trial. This new

cause, in turn, would be the cause undergoing weakening due to PSI administration (i.e., the trace-

dominance principle), rather than the old cause associated with the fear memory. Simulations of this

experiment (Figure 6C) demonstrate that stronger memories are more resistant to updating in our

model.

Figure 6. Boundary conditions on memory modification. Memory updating is attenuated under conditions of (A) more reexposure, (B) older or (C)

stronger memories.

DOI: 10.7554/eLife.23763.008
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Cue-specificity
Doyère et al. (2007) reported that disruption of memory by an amnestic treatment (in this case the

mitogen-activated protein kinase inhibitor U0126) is restricted to a reactivated CS, leaving intact the

CR to a non-reactivated CS that had also been paired with the US (Figure 7A). This finding is

explained by observing that in our model learning only affects the CSs associated with the current

inferred latent cause. In a recent study, Debiec et al. (2013) showed that cue-specificity of reconsoli-

dation depends on separately training the two CSs; when they are trained in compound, reactivating

one CS can render the other CS labile. Our model reproduces this effect (Figure 7B) as in this case

the compound cue is assigned to a single latent cause that generates both CSs and the US, thereby

coupling the two CSs.

In our simulation, responding at test is higher overall to the reactivated (relative to the non-reacti-

vated) cue, in both the control and PSI conditions. The relatively higher responding to the reacti-

vated cue is due to the fact that retrieval increases the probability of assigning the reactivated cue

to the acquisition latent cause at test. This points to a discrepancy with the original data, since

Debiec et al. (2013) did not find higher responding to the reactivated cue. Note, however, that this

issue is orthogonal to the main point of interest in this study, namely the effect of PSI on reactivated

and non-reactivated cues.

Timing of multiple reexposures
When the same CS is reexposed twice with a relatively short (1 hr) ITI separating the presentations,

PSI injection following the second presentation fails to disrupt the fear memory (Jarome et al.,

2012). This is essentially another manifestation of the trace dominance principle (Eisenberg et al.,

2003): two unreinforced reexposures cause the extinction trace to become more dominant, and the

PSI therefore disrupts the extinction trace rather than the fear trace. Jarome et al. (2012) found

that increasing the ITI between retrievals (from 1 hr to 6 hr, 24 hr and 1 week) resulted in a

Figure 7. Cue-specificity of amnestic treatment. (A) Disruption of memory modification by amnestic treatment affects the reactivated cue (CSr) but not

the non-reactivated cue (CSn). (B) When trained in compound, reactivating CSr renders CSn vulnerable to disruption of modification.

DOI: 10.7554/eLife.23763.009
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parametric decrease of fear at test, suggesting that longer intervals lead to disruption of the fear

trace by the PSI. This effect is predicted by our theory, due to the time-dependent prior over latent

causes, which prefers assigning trials separated by a long temporal interval to different causes. As a

result, longer ITIs reduce the probability that the two reexposures were generated by the same

‘extinction’ latent cause, concomitantly increasing the probability that the second reexposure was

generated by the ‘acquisition’ latent cause as compared to yet another new latent cause (Figure 8).

This result is parameter-dependent: If the concentration parameter is sufficiently large, then increas-

ing the interval will cause the animal to infer a new latent cause (different from the acquisition and

extinction causes) and thus the acquisition cause will not be affected by the PSI. Note that in the

Jarome et al. (2012) study, the retrieval-test interval, but not the acquisition-test interval, was fixed;

thus their results may partly reflect time-dependent changes in the posterior over latent causes, as

reflected in the control simulation.

Transience of amnesia
A major focus of theories of experimental amnesia (i.e., forgetting of the association formed during

acquisition) has been the observation that, under a variety of circumstances, recovery from amnesia

can occur (Miller and Matzel, 2006; Riccio et al., 2006). A study by Power et al. (2006) provides a

clear demonstration: Following conditioning, post-retrieval intrahippocampal infusions of the PSI ani-

somycin reduced conditioned responding when the rats were tested 1 day later, but responding

recovered when the test was administered after sic days. Thus, the PSI-induced memory impairment

was transient (see also Lattal and Abel, 2004). As pointed out by Gold and King (1974), recovery

from amnesia does not necessarily mean that the amnesia was purely a retrieval deficit. If the amnes-

tic agent diminished, but did not entirely eliminate, the reactivated memory, then subsequent

Figure 8. Timing of multiple reexposures. Lengthening the intertrial interval (ITI) between multiple reexposures

increases the simulated effectiveness of PSI administration in attenuating fear at test. The control simulation shows

results without PSI administration.
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recovery could reflect new learning added on to the residual memory trace (under the assumption

that memory reactivation itself supplies a learning experience).

The explanation that our theory offers for the transience of amnesia is related to Gold’s interpre-

tation, in that we also assume a residual memory trace. Since the amnestic agent does not entirely

eliminate the memory trace, later recovery of the fear memory occurs because the relative probabil-

ity of assigning a new test observation to the acquisition cause rather than to the cause associated

with the retrieval session (which was, in effect, a short extinction session) increases over time (a con-

sequence of temporal compression by the power law kernel, as explained above). In other words,

this is a form of spontaneous recovery: The original (weakened) memory becomes more retrievable

over time. Thus, our explanation can be viewed as a retrieval-based theory (see Miller and Springer,

1974), while not ruling out the possibility that the memory is partially degraded by the amnestic

agent. Simulations shown in Figure 9 demonstrate that this explanation can account for the increase

in CR with longer retrieval-test intervals. Interestingly, the model predicts that further increasing the

retrieval-test interval will eventually result in slightly reduced responding, because of the increased

probability of a new latent cause at test.

State-dependency
A long-standing explanation for recovery from amnesia is state-dependency: the idea that the inter-

nal state induced by the amnestic agent becomes part of the memory representation, such that dis-

rupted responding at test can be explained by retrieval failure or generalization decrement

(Miller and Springer, 1973; Riccio et al., 2006; Spear, 1973) due to the absence of the amnestic

agent at test. In other words, apparent ‘amnesia’ is a consequence of a mismatch between internal

states at acquisition and test. As pointed out by Nader and Hardt (2009), this hypothesis faces a

number of difficulties in explaining the empirical data. For example, it cannot explain why memory

Figure 9. Transience of amnesia. Lengthening the interval between retrieval and test results in recovery from

amnesia.

DOI: 10.7554/eLife.23763.011
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can sometimes be enhanced by post-retrieval treatments (e.g., Tronson et al., 2006; Lee et al.,

2009; Lee et al., 2006b).

In spite of these difficulties, a recent report (Gisquet-Verrier et al., 2015) found striking evidence

in favor of the state-dependency hypothesis (see also Hinderliter et al., 1975). As in previous stud-

ies, the authors found that post-conditioning PSI administration disrupted the CR at test; the novel

twist was that administering the PSI both immediately after conditioning and immediately before

test eliminated the disruptive effect. This finding fits naturally with the idea that the PSI induced a

discriminative internal state, and hence the observed ‘amnesia’ was in fact a retrieval failure or gen-

eralization decrement.

We simulated state-dependency by adding the PSI as an additional CS (Figure 10). Consistent

with the experimental findings of Gisquet-Verrier et al. (2015), the state-dependent version of the

latent cause theory reproduced the reversal of CR disruption by PSI administration prior to the test

phase. Our other results are qualitatively unchanged when we add this additional state feature.

Importantly, the state-dependency does not depend on any weakening effects of the PSI itself.

Thus, a fairly simple extension of our model can accommodate the state-dependency hypothesis.
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Figure 10. State-dependency of amnesia. The amnestic affect of PSI administration after conditioning can be

reversed by readministering the PSI at the time of test (‘PSI-PSI’). Here ‘SAL’ denotes administration of saline

instead of the PSI, indicated by the pale syringe in the schematic.
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The Monfils-Schiller paradigm
While extinction procedures after fear conditioning are, in general, not effective in producing perma-

nent and generalizable reduction of fear, two influential studies (Monfils et al., 2009; Schiller et al.,

2010) demonstrated that a single reexposure (‘retrieval trial’) of a CS that had been associated with

a shock, 24 hr after acquisition and 10–60 min before extinction, leads to persistent reduction of fear

as measured by renewal, reinstatement and spontaneous recovery tests. Importantly, this effect did

not require pharmacological interventions such as PSIs, and it was evident in both rodents

(Monfils et al., 2009) and humans (Schiller et al., 2010).

These studies also revealed that: (1) reduction of fear in humans is still evident a year later; (2) the

reduction is specific to the cue-reactivated memory; and (3) increasing the retrieval-extinction inter-

val to 6 hr eliminates the effect. That is, extinction after a retrieval trial is more effective at modifying

the original association than regular extinction, but this only holds for extinction sessions adminis-

tered relatively promptly after the retrieval cue. This latter finding suggests that the retrieval cue

engages a time-limited plasticity window, in which extinction operates. These findings have been

replicated several times in rodents (Auchter et al., 2017; Baker et al., 2013; Clem and Huganir,

2010; Jones et al., 2013; Olshavsky et al., 2013b, 2013a; Ponnusamy et al., 2016; Rao-

Ruiz et al., 2011) and humans (Agren et al., 2012; Oyarzún et al., 2012; Schiller et al., 2013;

Steinfurth et al., 2014), though the generality of the paradigm remains controversial (Chan et al.,

2010; Costanzi et al., 2011; Kindt and Soeter, 2013; Soeter and Kindt, 2011; Kredlow et al.,

2016).

It is important to recognize that the so-called ‘retrieval trial’ is operationally no different from an

extinction trial—it is a CS presented alone. Essentially, the principal salient difference between the

Monfils-Schiller paradigm and regular extinction training is that in the Monfils-Schiller paradigm, the

interval between the first and second extinction trials is substantially longer than the intervals

between all the other trials. Another difference (which we address later) is that in the Monfils-Schiller

paradigm, the subject spends the retrieval-extinction interval outside the acquisition context, in its

home cage. This phenomenon is thus puzzling for most—if not all—theories of associative learning.

What happens during this one interval that dramatically alters later fear memory? Below we provide

a normative computational account of this phenomenon based on our framework for Pavlovian con-

ditioning. We also suggest explanations for some of the inconsistencies across studies.

Model simulations of the Monfils-Schiller paradigm are shown in Figure 11. We simulated three

conditions, differing only in the retrieval-extinction interval (REI): No Ret (REI = 0, that is, extinction

begins with no separate retrieval trial), Ret-short (REI = 3), Ret-long (REI = 100). Time is measured in

arbitrary units here; see the Materials and methods for a description of how these units roughly map

on to real time. As observed experimentally, in our simulations all groups ceased responding by the

end of extinction. Both Ret-long and No Ret showed spontaneous recovery after a long extinction-

test delay. In contrast, in the Ret-short condition there was no spontaneous recovery of fear at test.

Examining the posterior distributions over latent causes in the different conditions (Figure 11B–D),

we see that the extinction trials were assigned to a new latent cause in the No Ret and Ret-long con-

ditions, but to the acquisition cause in the Ret-short condition.

Our theoretical explanation of data from the Monfils-Schiller paradigm rests critically on the ‘rumi-

nation’ process (i.e., iterative updating according to the EM algorithm) that occurs in the interval

between the first and second extinction trials (the REI). Since there is some probability that the origi-

nal (‘acquisition’) latent cause is active during the REI, the first iteration of associative learning in the

EM algorithm will reduce the CS-US association for that latent cause. On the next iteration, the

model will be even more likely to infer that the original latent cause is active (since the CS-US associ-

ation strength is smaller, the prediction error induced by the CS appearing without the US will be

even smaller). As a result of this increased probability that the original latent cause is active, the CS-

US association will be reduced even more. In our model, the number of EM iterations (up to a maxi-

mum of 3 iterations, with one iteration per timestep; see model description) depends on the length

of the REI. More iterations cause the original association to be further weakened after the first

retrieval trial, and therefore spontaneous recovery of the original fear memory at test is attenuated

(Figure 12A).

When the interval is too short (as in the No Ret condition), there is insufficient time (i.e., only a

single EM iteration) to reduce the CS-US association and thus later extinction trials are preferentially
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assigned to a new latent cause rather than the acquisition cause. When the interval is too long (as in

the Ret-long condition), although the CS-US association of the acquisition latent cause is reduced

during the REI, extinction trials will be preferentially assigned to a new latent cause due to the time-

sensitive prior that suggests that events far away in time are generated by different causes. Thus in

this condition as well, the original association is not attenuated by the extinction trials any further,

and spontaneous recovery of fear occurs at test. It is only in the intermediate condition, the short

REI, that the EM iterations reduce the prediction of the US by the acquisition latent cause sufficiently

so as to allow later extinction trials to be assigned to this same latent cause, therefore reducing the

prediction of the US by this cause even further, effectively ‘erasing’ the fear memory. This nonmono-

tonic dependence on the REI is shown in Figure 12B.

Note that our model predicts that all the boundary conditions discussed earlier should apply to

the Monfils-Schiller paradigm. Thus, for example, older memories should be more difficult to disrupt,

even with an intermediate REI. We revisit this point in the next section.

The importance of iterative adjustment during the retrieval-extinction interval suggests that dis-

tracting or occupying animals during the interval should disrupt the Monfils-Schiller effect. For exam-

ple, our theory predicts that giving rodents a secondary task to perform during the interval will

prevent the iterative weakening of the CS-US association of the acquisition cause, leading to assign-

ment of extinction trials to a new latent cause (as in regular extinction) and to later recovery of fear.

Alternatively, it might be possible to enhance the effect by leaving the animal in the conditioning
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Figure 11. Model predictions for the Monfils-Schiller paradigm. (A) Simulated conditioned response (CR) during acquisition (Acq; 3 CS-US pairs),

retrieval (Ret; 1 CS presentation 24 hr after acquisition, followed by no interval, a short interval, or a long interval before the next phase), extinction (Ext;

CS-alone presentations) and a test phase 24 hr later. Three conditions are shown: No-Ret (no interval between retrieval and extinction; the ‘Ret’ trial

depicted here is the first trial of extinction), Ret-short (retrieval with a short post-retrieval interval), and Ret-long (retrieval with a long post-retrieval

interval). (B–D) The posterior probability distribution over latent causes (denoted C1, C2 and C3) in each condition. Probabilities for only the top three

highest-probability causes are shown.
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chamber during the interval; the chamber would serve as a reminder cue, potentially preventing the

animal from getting distracted. On the other hand, the conditioning chamber is associated with

stress, so rumination may be about shocks rather than their absence. Thus, it might be that rumina-

tion in the safe haven of the homecage is most effective at producing subsequent memory

modification.

Cue-specificity in the Monfils-Schiller paradigm
Figure 13 shows simulations of the cue-specificity experiment reported in Schiller et al. (2010). In a

within-subjects design, two CSs were paired with shock, but only one was reexposed prior to extinc-

tion in a ‘retrieval’ trial. Consistent with the findings of Doyère et al. (2007), Schiller et al. (2010)

found that fear recovered for the CS that was not reexposed, but not for the reexposed CS. This

finding fits with our theoretical interpretation that CS reexposure leads to memory modification for

the US association specific to that CS and the reactivated latent cause.
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Figure 12. Dynamics of associative and structure learning during the retrieval-extinction interval in the Monfils-Schiller paradigm. (A) The X-axis

represents the associative weight corresponding to the acquisition latent cause. The Y-axis represents the posterior probability that the acquisition

latent cause is active for the retrieval trial. Each numbered square indicates a particular iteration during the retrieval-extinction interval, with ’0’

indicating the last trial of acquisition. Initially, the prediction error causes the posterior to favor a new latent cause rather than the old acquisition cause,

however, over the course of three iterations, incremental reductions in the associative weight pull the posterior probability higher by making the

retrieval trial more likely under the acquisition cause. (B) As the retrieval-extinction interval grows longer, the probability of assigning the first extinction

trial to the acquisition cause changes non-monotonically. Two non-reinforced trials very close in time are likely to come from a new latent cause, thus

the posterior probability of the acquisition cause generating these trials starts low. It peaks at a larger retrieval-extinction interval; as this interval

increases, the acquisition cause’s associative strength is incrementally reduced, thereby making the extinction trials more likely under the acquisition

cause. The curve then gradually diminishes due to the time-sensitive prior that causes temporally separated events to be more likely to be generated

by different causes (Equation 3). Each EM iteration takes a single timestep, and at least 1 EM iteration is always performed, up to a maximum of 3,

depending on the intertrial interval.
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Boundary conditions in the Monfils-Schiller paradigm
Several studies have failed to show persistent reduction of fear using the Monfils-Schiller paradigm

(Chan et al., 2010; Costanzi et al., 2011; Kindt and Soeter, 2013; Soeter and Kindt, 2011). Is the

paradigm inherently fragile, or do these discrepancies delineate systematic boundary conditions?

Auber et al. (2013) identified many methodological differences between experiments using the

Monfils-Schiller paradigm. The question facing our theory is whether the effects of these differences

can be explained as a rational consequence of inference given sensory data. Many of the differences

involve experimental variables that are outside the scope of our theory, such as the tone frequency

in auditory fear conditioning (Chan et al., 2010), or affective properties of picture stimuli in human

studies (Kindt and Soeter, 2013; Soeter and Kindt, 2011), neither of which are explicitly repre-

sented in our model. We therefore focus on the two methodological differences that do fall within

the scope of our theory.

Costanzi et al. (2011) trained mice to associate a foot-shock with a context, and then induced

retrieval of the contextual memory 29 days later by placing the mice in the conditioning context for

3 min. An extinction session in the same context followed one hour later. The next day, the mice

were tested for contextual fear in the conditioning context. Costanzi et al. (2011) found that extinc-

tion after retrieval did not attenuate contextual fear any more so than regular extinction without a

retrieval trial, contrary to the findings of Monfils et al. (2009).

Auber et al. (2013) pointed out that a crucial difference between the studies of Costanzi et al.

(2011) and Monfils et al. (2009) was the acquisition-retrieval interval: 29 days in Costanzi et al.

(2011) and 1 day in Monfils et al. (2009). As we reviewed above, it is well-established that older

memories resist modification (Alberini, 2007). According to our theory, this phenomenon occurs
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Figure 13. Cue-specificity in the Monfils-Schiller paradigm. Model simulations of the within-subjects design reported by Schiller et al. (2010), in which

two CSs (CSaþ and CSbþ) were individually paired with shock (CS� was never paired with a shock), but only one (CSaþ) was reexposed in a ‘retrieval’

trial prior to extinction. Fear recovery is attenuated for the reexposed CS.
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because when the acquisition-retrieval interval is long, the retrieval trial is less likely to have been

generated by the same latent cause as the acquisition trials.

Our theory therefore predicts the difference between the two experiments (Figure 14A). A direct

comparison of new and old memories in the Monfils-Schiller paradigm was reported by (Gräff et al.,

2014); consistent with our hypothesis, younger memories were more susceptible to modification

(see also Jones and Monfils, 2016, for converging evidence).

In another study reporting discrepant results, Chan et al. (2010) found that the Monfils-Schiller

paradigm failed to prevent the return of fear in renewal and reinstatement tests. Auber et al. (2013)

observed that the study by Chan et al. (2010) used different experimental boxes located in different

rooms for acquisition and for retrieval and extinction, whereas in their renewal experiment

Monfils et al. (2009) modified the conditioning box to create a new context for retrieval and extinc-

tion, while keeping the room the same. We simulated the different contexts by adding a ‘context’

feature that allowed us to parametrically vary the similarity between acquisition and retrieval/extinc-

tion contexts. In particular, we assumed that this feature was 1 in acquisition, and then in retrieval

and extinction we represented the similar context by setting the feature to 0.8, whereas the dissimi-

lar context feature was set to 0. We found that retrieval and extinction in a similar context led to less

renewal at test than did retrieval and extinction in a very different context (Figure 14B). This is

because when acquisition and retrieval/extinction contexts are similar, there is a higher probability

that the latter trials will be assigned to the original acquisition latent cause—i.e., that the ‘retrieval’

trial will indeed retrieve the old association (see also Gershman et al., 2010, 2013c). As with the

Costanzi et al. (2011) study, it is important to note that (Chan et al., 2010) did not parametrically

manipulate similarity, so further experimental work is required to verify our account.

Figure 14. Boundary conditions in the Monfils-Schiller paradigm. (A) A short acquisition-retrieval interval is more effective at attenuating spontaneous

recovery of fear at test than a long acquisition-retrieval interval. (B) A retrieval/extinction context (A*) that is similar to the acquisition context (A) leads

to attenuated renewal of fear when tested in A, whereas a very dissimilar context (B) leads to renewal.
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In summary, our theory provides a statistically principled explanation for the efficacy of the Mon-

fils-Schiller paradigm in attenuating learned fear, and also reconciles some of the discrepant findings

across different studies using this paradigm. These findings can therefore be regarded as delineating

systematic boundary conditions on the original findings, although more work will be required to

ascertain whether all the discrepancies identified by Auber et al. (2013) can be rationalized in this

way.

Paradoxical enhancement of memory
In the Monfils-Schiller paradigm, extinction follows memory retrieval; what happens if the extinction

phase is omitted? It has been observed that retrieval without extinction leads to ‘paradoxical’

enhancement of a weak acquisition memory at the time of test (Eysenck, 1968; Rohrbaugh and Ric-

cio, 1970; Rohrbaugh et al., 1972). Paradoxical enhancement of memory may be related to well-

established ‘testing effects’, which show that memory is enhanced by the act of retrieval even in the

absence of feedback (e.g., Karpicke and Roediger, 2008). This finding is paradoxical because no

new learning has taken place, suggesting that retrieval enhances the retrievability of the memory

(Riccio et al., 2006; Spear, 1973). There is also evidence that paradoxical enhancement is transient,

disappearing with longer retrieval-test intervals (Gisquet-Verrier and Alexinsky, 1990).

Our model accounts for these findings (Figure 15) by positing that the retrieval trial induces the

inference that the acquisition cause is once again active, and this inference persists into the test

phase due to the contiguity principle. That is, when comparing to a test phase without the retrieval

trial, the role of the retrieval trial in our theory is to ‘bridge the gap’ between training and test, and

prolong the duration for which the acquisition cause is inferred to be active. The contiguity principle
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Figure 15. Paradoxical enhancement of memory. A weak conditioned response is first acquired using a low-

intensity US (in order to prevent a ceiling effect). The graph shows the conditioned response at test following a

retrieval cue (Ret) or no retrieval cue (No Ret) at short and long retrieval-test intervals.
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also implies that the inference should be transient, which explains why longer retrieval-test intervals

eliminate the effect. The paradoxical enhancement of memory due to retrieval can thus be explained

by our model in terms of altered retrieval probability rather than new associative learning. Our

model makes further predictions regarding the efficacy of the retrieval trial as a function of its delay

after conditioning—delayed retrieval just before test should be less effective at enhancing fear at

test, because it is less likely to reactivate the acquisition latent cause.

Discussion
We have shown how major phenomena in post-retrieval memory modification can be accounted for

by a rational analysis of Pavlovian conditioning. The key idea of our theory is a distinction between

two learning processes: a structure learning process that infers the latent causes underlying sensory

data, and an associative learning process that adjusts the parameters of the internal model so that

each latent cause is likely to give rise to the sensory data ascribed to it. While this latter process has

a statistical interpretation in our model, it is in practice similar to standard Rescorla-Wagner or rein-

forcement learning. The main difference is that our theory extends previous associative learning the-

ories that concentrate on the latter process while assuming a fixed model of the environment, and

formalizes the dynamic interplay between learning and memory, which we suggest is at the heart of

post-retrieval memory modification phenomena. We further show that the theory can reproduce

experimentally observed boundary conditions on memory modification, such as the effects of age,

memory strength, and prediction error.

The discussion is organized as follows. First we discuss the main results of our theory, we then

sketch a tentative neural implementation of our model. We then compare our model to previous

models of the same phenomena, in particular one that is more tightly related to a neural implemen-

tation (Osan et al., 2011), and one originating in the human memory literature that has gained con-

siderable empirical support (Howard and Kahana, 2002; Howard et al., 2005; Sederberg et al.,

2008). Finally, we discuss the relationship between our framework and the popular notion of ‘recon-

solidation’—a hypothetical neural process by which previous memories can be modified upon

retrieval.

Explaining the mystery of the Monfils-Schiller paradigm
One of the most intriguing recent findings in the memory modification literature was the discovery

of a noninvasive behavioral treatment that is effective at attenuating recovery of conditioned fear

(Agren et al., 2012; Monfils et al., 2009; Schiller et al., 2010). Monfils, Schiller and their colleagues

demonstrated (in both rodents and humans) that performing extinction training within a short inter-

val following a retrieval cue (an unreinforced CS presentation) reduced later recovery of fear. The

effect was later demonstrated in appetitive learning (Ma et al., 2012) and contextual fear condition-

ing (Flavell et al., 2011; Rao-Ruiz et al., 2011). The Monfils-Schiller paradigm has also been applied

to drug-associated memory, attenuating drug-seeking in rats and cue-induced heroin craving in

human addicts (Xue et al., 2012), as well as reducing cocaine-primed reinstatement of conditioned

place preference (Sartor and Aston-Jones, 2014) and context-induced reinstatement of alcoholic

beer seeking (Millan et al., 2013) in rats.

The Monfils-Schiller paradigm is theoretically tantalizing because it is not a priori clear what is the

difference between the retrieval trial and the first trial of any extinction session—why is it that the

CS-alone trial in the Monfils-Schiller paradigm acts as a ‘retrieval cue’, while the first CS-alone trial of

a regular extinction session does not? Previous explanations had suggested that the retrieval cue

starts a reconsolidation process, whereas the original (recalled) memory is rendered labile, and can

be modified while it is being reconsolidated into long term memory. The idea was that the extinction

session then modifies this labile memory, permanently rewriting it as a less fearful memory

(Monfils et al., 2009). However, it is not clear why this should not happen in regular extinction,

where the first extinction trial can also be seen as a retrieval cue that initiates a reconsolidation cas-

cade. The effectiveness of this paradigm thus seems to challenge our basic understanding of the

interplay between learning and memory processes.

Our theory resolves this puzzle by stressing the role of the extended period of learning (in our

model, additional iterations of the EM algorithm) during the long retrieval-extinction gap, in which

the rat is left in its home cage to ‘ruminate’ about its recent experience. Thus our explanation rests
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not on the existence of a separate reconsolidation process that is invoked by the retrieval trial, but

rather on the same learning and memory mechanisms that are at play in acquisition and extinction—

the idea that inference about the latent structure of the environment affects whether new informa-

tion will update an old association, or whether it will be attributed to a new memory (new latent

cause). In this sense, according to our theory, the ‘retrieval’ trial is, in fact, not different from any

other trial, and perhaps a more accurate nomenclature would be to call the retrieval-extinction inter-

val an ‘updating interval’ rather than focus on a ‘retrieval cue’.

Despite its successes, the effectiveness of the Monfils-Schiller paradigm has been controversial,

with several replication failures (Chan et al., 2010; Costanzi et al., 2011; Ishii et al., 2015;

Kindt and Soeter, 2013; Ma et al., 2012; Soeter and Kindt, 2011). Auber et al. (2013) described

a number of methodological differences between these studies, possibly delineating boundary con-

ditions on the Monfils-Schiller paradigm. Inspired by this suggestion, we showed through simulations

that the consequences of several methodological differences (acquisition-retrieval interval and con-

text similarity) are indeed predicted by our theory. Nevertheless, important boundary conditions on

the length and characteristics of the retrieval-extinction interval remain to be studied; for instance,

does it have to be longer than 10 min (as has been done in previous experiments) or is the minimum

length of this gap more parametrically dependent on the overall pace of new information (e.g., the

length of the ITIs at acquisition).

From a neurobiological standpoint, recent work has lent plausibility to the claim that the Monfils-

Schiller paradigm erases the CS-US association learned during acquisition. After fear conditioning,

there is an upregulation of AMPA receptor trafficking to the post-synaptic membrane at thalamus-

amygdala synapses, and memory is impaired if this trafficking is blocked (Rumpel et al., 2005), sug-

gesting that changes in post-synaptic AMPA receptor density may be the neural substrate of asso-

ciative learning in fear conditioning. Monfils et al. (2009) reported increased phosphorylation of

AMPA receptors in the lateral amygdala after the retrieval trial (a possible correlate of memory labili-

zation), and also found that a second CS presented one hour after the first reversed the increase in

AMPAr phosphorylation. Clem and Huganir (2010) found that extinction following retrieval resulted

in synaptic removal of calcium-permeable AMPA receptors. The latter finding is significant in that it

indicates a reversal of the synaptic changes that occurred during conditioning, supporting the view

that the Monfils-Schiller paradigm results in unlearning of the original CS-US association. Further-

more, the Monfils-Schiller paradigm has been shown to induce neural modifications that are distinct

from standard extinction (Lee et al., 2015; Tedesco et al., 2014).

Our theoretical analysis is consistent with these findings. We showed in simulations that during

the retrieval-extinction interval, an associative learning process is engaged (and continues to be

engaged during extinction training) that decrements the CS-US association, whereas in our model

standard extinction engages a structure learning process that assigns the extinction trials to a new

latent cause, creating a new memory trace without modifying the original memory.

Neural implementation
Although we have so far not committed to any specific neural implementation of our model, we

believe it fits comfortably into the computational functions of the circuit underlying Pavlovian condi-

tioning. Here we propose a provisional mapping onto this circuit, centering on the amygdala and

the ‘hippocampal-VTA loop’ (Lisman and Grace, 2005) connecting the hippocampus and the ventral

tegmental area in the midbrain. Our basic proposal is inspired by two lines of research, one on the

role of hippocampus in structure learning (Aggleton et al., 2007; Gershman et al., 2010,

2014), and one on the role of the dopamine system and the amygdala (Blair et al., 2001) in associa-

tive learning.

In previous work, we have suggested that the hippocampus is a key brain region involved in parti-

tioning streams of experience into latent causes (Gershman et al., 2010, 2014). This view resonates

with earlier models emphasizing the role of the hippocampus in encoding sensory inputs into a sta-

tistically compressed latent representation (Fuhs and Touretzky, 2007; Gluck and Myers, 1993;

Levy et al., 2005). Some of the evidence for this view comes from studies showing that context-spe-

cific memories depend on the integrity of the hippocampus (e.g., Honey and Good, 1993), indicat-

ing that animals without a hippocampus cannot ‘carve nature at its joints’ (i.e., partition observations

into latent causes; see Gershman and Niv, 2010; Gershman et al., 2015).
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Within the current model, we propose that the dentate gyrus (DG) activates latent representa-

tions of the sensory inputs in area CA3. Each of these representations corresponds to a latent cause,

and their level of activation is proportional to their prior probability (Equation 3). Mechanistically,

these representations may be encoded in attractors by the dense recurrent collaterals that are char-

acteristic of CA3 (McNaughton and Morris, 1987).

An important aspect of our model is that the repertoire of latent causes can expand adaptively.

One potential mechanism for creating new attractors is neurogenesis of granule cells in the DG

(Becker, 2005). This account predicts that the role of neurogenesis in creating new attractors should

be time-sensitive in a manner comparable to the latent cause prior (i.e., it should implement the con-

tiguity principle). Consistent with this hypothesis, Aimone et al. (2006) have suggested that imma-

ture granule cells, by virtue of their low activation thresholds, high resting potentials and constant

turnover, cause inputs that are distant in time to map onto distinct CA3 representations. Further-

more, evidence suggests that new granule cells die over time if they are not involved in new learning

(Shors et al., 2012), offering another mechanism by which the contiguity principle could be

implemented.

Consistent with the idea that neurogenesis supports the partitioning of experience into latent

causes, suppression of neurogenesis reduces both behavioral and neural discrimination between

similar contexts (Niibori et al., 2012). Importantly, many CA3 neurons are temporally selective,

responding to individual contexts only if exposures are separated by long temporal intervals, and

this selectivity depends on intact neurogenesis (Rangel et al., 2014), as one would expect based on

the contiguity principle. Our interpretation of neurogenesis predicts that its suppression (e.g., by

irradiation of the DG), will force experiences separated by long temporal gaps to be assigned to the

same latent cause, thus eliminating the age-based boundary condition on memory modification

(Alberini, 2007; Milekic and Alberini, 2002; Suzuki et al., 2004).

There is widespread agreement that CS-US associations in auditory fear conditioning are encoded

by synapses between the thalamus and the basolateral amygdala (BLA; McNally et al., 2011).

Accordingly, we suggest that the amygdala transmits a US prediction that is then compared to sen-

sory afferents from the periacqueductal gray region of the midbrain. The resultant prediction error is

computed in the ventral tegmental area (VTA) and transmitted by dopaminergic projections to both

the amygdala and CA1.

Our theory makes the testable prediction that disrupting the neural substrates of associative

learning, or potentiating the neural substrates responsible for inferring new latent causes, during the

retrieval-extinction interval should block memory updating in the Monfils-Schiller paradigm. Thus,

both deactivating the BLA or stimulating the DG (e.g., using optogenetic manipulations) should

block memory updating following retrieval. We also predict that the relative balance of activity in

these two regions, measured for example using fMRI, should relate to individual differences in condi-

tional responding in the test phase.

The role of dopamine in associative learning is well established (see Glimcher, 2011 for a review),

and has been specifically implicated in Pavlovian fear conditioning (Pezze and Feldon, 2004),

although the role of dopamine in aversive conditioning is still a matter of controversy

(Mirenowicz and Schultz, 1996; Brooks and Berns, 2013; Cohen et al., 2012). Dopamine gates

synaptic plasticity in the basolateral amygdala (Bissière et al., 2003), consistent with its hypothe-

sized role in driving the learning of CS-US associations. We hypothesize that dopaminergic inputs to

CA1 have an additional role: influencing the posterior distribution over latent causes. That is, dopa-

mine prediction errors can be used to assess the similarity of current sensory inputs to those

expected by the current configuration of latent causes. Large discrepancies will cause the generation

of a new latent cause, to account for the current unpredicted sensory input (see Figure 3). The out-

put of CA1 further feeds back into the VTA by way of the subiculum (Lisman and Grace, 2005),

potentially providing a mechanism by which the posterior distribution over latent causes can modu-

late the prediction errors, as suggested by our model. In appetitive conditioning experiments,

(Reichelt et al., 2013) have shown that dysregulating dopaminergic activity in the VTA prevented

the destabilization of memory by NMDA receptor antagonists (injected systemically following a

retrieval trial), consistent with the hypothesis that dopaminergic prediction errors are necessary for

memory updating after memory retrieval. It is not known whether this effect is mediated by dopami-

nergic projections to the hippocampus.
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Why expectation-maximization?
A key claim of this paper is that associative and structure learning are coupled: learning about asso-

ciations depends on structural inferences, and vice versa. Our rational analysis suggested that this

coupling can be resolved by alternating between the two forms of learning, using a form of the EM

algorithm (Dempster et al., 1977; Neal and Hinton, 1998). While we do not believe that this is a lit-

eral description of the computational processes underlying learning, it is a useful abstraction for sev-

eral reasons. First, EM is the standard method in machine learning for dealing with coupled

problems of this form—namely, problems in which both latent variables and parameters are

unknown. It is also closely related to variational inference algorithms (see Neal and Hinton, 1998),

which have become a workhorse for scalable Bayesian computation. Second, variants of EM have

become popular as theories of learning in the brain. For example, Friston (2005) suggests that it is

a basic motif for synaptic plasticity in the cortex, and biologically plausible spiking neuron implemen-

tations have been put forth by Deneve (2008) and Nessler et al. (2013). Third, as described in the

Appendix, EM reduces to the Rescorla-Wagner model under particular parameter constraints. Thus,

it is natural to view the model as a principled generalization of the most well-known account of Pav-

lovian conditioning. Fourth, the iterative nature of EM plays an important role in our explanation of

the Monfils-Schiller effect: the balance between memory formation and modification shifts dynami-

cally over multiple iterations, and we argued that this explains why a short period of quiescence prior

to extinction training is crucial for observing the effect.

Comparison with a mismatch-based autoassociative neural network
(Osan et al., 2011)have proposed an autoassociative neural network model of memory modification

that explains many of the reported boundary conditions in terms of attractor dynamics (see

Amaral et al., 2008 also for a related model). In this model, acquisition and extinction memories

correspond to attractors in the network, formed through Hebbian learning. Given a configuration of

sensory inputs, the state of the network evolves towards one of these attractors. The retrieved

attractor is then updated through Hebbian learning. In addition, a ‘mismatch-induced degradation’

process adjusts the associative weights that are responsible for the mismatch between the retrieved

attractor and the current input pattern (i.e., the weights are adjusted to favor the input pattern). Mis-

match is assumed to accumulate over the course of the input presentation.

The degradation process in this model can be viewed as a kind of error-driven learning: When the

network does not accurately encode the current input, the weights are adjusted to encode it more

accurately in the future. In the case of extinction, this implements a form of unlearning. The relative

balance of Hebbian learning and mismatch-induced degradation determines the outcome of extinc-

tion training: assuming that the original shock pattern is retrieved at the beginning of extinction,

degradation weakens the shock pattern, whereas Hebbian learning strengthens the retrieved shock

pattern. Administration of PSIs is modeled as temporarily eliminating the influence of Hebbian plas-

ticity on the weight update.

Osan et al. (2011) showed that their network model could account for a number of the boundary

conditions on memory modification described above. For example, they simulated the effect of CS

reexposure duration prior to PSI administration (Eisenberg et al., 2003; Suzuki et al., 2004) and

suggested that post-reexposure PSI administration should have a tangible effect on the shock mem-

ory only for short, but not too short reexposure durations (i.e., what we modeled as ‘short’ duration

in our simulations of the PSI experiments): for very short reexposure trials, the shock memory is pref-

erentially retrieved because it has already been encoded in an attractor as a consequence of acquisi-

tion (i.e., the shock memory is the dominant trace). The accumulated mismatch is small, and hence

mismatch-induced degradation has little effect on the shock memory. Since the mismatch is close to

zero and the effect of PSIs is to turn off Hebbian learning, the net effect of PSI administration follow-

ing reexposure is no change in the memory. On long reexposure trials, the accumulated mismatch

becomes large enough to favor the formation of a new attractor corresponding to the extinction

memory (i.e., the no-shock memory is the dominant trace). In this case, PSI administration will have

little effect on the shock memory, because after a sufficiently long duration Hebbian learning is oper-

ating on a different attractor. Only in the case of intermediate-length reexposure, mismatch is large

enough to induce degradation of the shock attractor, but not large enough to induce the formation

of a new, no-shock attractor. The PSI prevents Hebbian learning from compensating for this
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degradation by strengthening the shock attractor, so the result is a net decrease in the strength of

the shock attractor.

In addition to the parametric effect of reexposure duration on reconsolidation, Osan et al. (2011)

also simulated the effects of memory strength (more highly trained memories are resistant to disrup-

tion by PSI administration), the effects of NMDA receptor agonists (which have the opposite effects

of PSIs), and the effects of blocking mismatch-induced degradation (the amnestic effect of PSI

administration is attenuated). However, the model of Osan et al. (2011) is fundamentally limited by

the fact that it lacks an explicit representation of time within and between trials. This prevents it

from accounting for the results of the Monfils-Schiller paradigm: all the retrieval-extinction intervals

should lead to the same behavior (contrary to the empirical data). The lack of temporal representa-

tion also prevents it from modeling the effects of memory age on reconsolidation, since there is no

mechanism for taking into account the interval between acquisition and reexposure. In contrast, our

model explicitly represents temporal distance between observations, making it sensitive to changes

in timing.1212Conceivably, one could incorporate a time-sensitive mechanism into the Osan model

by using a ‘temporal context’ signal that drifts slowly over time (see Sederberg et al., 2011).

Another, related issue with the model of Osan et al. (2011) is that in order to explain spontane-

ous recovery, it was necessary to introduce an ad hoc function that governs pattern drift during reex-

posure. This function—by construction—produces spontaneous recovery, but it is not obvious why

pattern drift should follow such a function, and no psychological or neurobiological justification was

provided. Nonetheless, an appealing feature of the Osan et al. (2011) model is its neurobiological

plausibility. We know that attractor networks exist in the brain (e.g., in area CA3 of the hippocam-

pus), and (in certain circumstances) support the kinds of learning described above. The model is

appealing as it provides a simplified but plausible mapping from computational variables to biologi-

cal substrates.

As we discussed in the previous section, one way to think about latent causes at a neural level is

in terms of attractors (e.g., in area CA3). Thus, although the formal details of Osan et al. (2011) dif-

fer from our own, there may be neural implementations of the latent cause model that bring it closer

to the formalism of the attractor network. However, in its current form, our model is not specified at

the same biologically detailed level as the model of Osan et al. (2011); our model makes no distinc-

tion between Hebbian plasticity and mismatch-induced degradation, and consequently has nothing

to say about pharmacological manipulations that selectively affect one or the other process, for

example the disruption of mismatch-induced degradation by inhibitors of the ubiquitin-proteasome

cascade (Lee et al., 2008).

Comparison with stimulus sampling and retrieved context models
One of the first formal accounts of spontaneous recovery from extinction was developed by

Estes, (1955). In his stimulus sampling theory, the nominal stimulus is represented by a collection of

stimulus elements that change gradually and randomly over time. These stimulus elements enter into

association with the US, such that the CR is proportional to the number of conditioned elements.

When the CS is presented again at a later time, the CR it elicits will thus depend on the overlap

between its current vector of stimulus elements and the vector that was present during conditioning.

Extinction reverses the learning process, inactivating the currently active conditioned elements. How-

ever, some conditioned elements will not be inactive during the extinction phase (due to stimulus

sampling). As the interval between extinction and test increases, these elements will randomly re-

enter the stimulus representation, thereby producing spontaneous recovery of the extinguished CR.

This theory has since been elaborated in a number of significant ways to accommodate a wide vari-

ety of memory phenomena (Howard, 2014).

While stimulus sampling theory, on the surface, appears quite different from our latent cause the-

ory, there are some intriguing connections. The assumption that the same nominal stimulus can have

different representations at different times is central to both accounts. Our theory posits latent stim-

ulus elements (causes) that change over time, but these elements are not directly observable by the

animal; rather, the structure learning system constructs a representation of these elements through

Bayesian inference. Knowledge about gradual change is built into the prior through the contiguity

principle. Like stimulus sampling theory, our theory views spontaneous recovery as a consequence of

the extinction memory’s waning through random fluctuation. Again, this fluctuation is inferred rather

than observed.
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The structure learning system acquires explicit distributional information about the latent

causes—information that is absent from the stimulus sampling theory as developed by Estes (1955).

As a consequence, in our framework the representation of a stimulus contains information about its

history and the history of other stimuli that were inferred to have been generated by the same latent

cause. Because of the contiguity principle, stimuli that occur nearby in time are likely to have been

generated by the same latent cause; this means that the ‘temporal context’ of a stimulus figures

prominently in the distributional information stored by the structure learning system.

The Temporal Context Model (TCM; Howard et al., 2005; Howard and Kahana, 2002;

Sederberg et al., 2008) can be viewed as a modern-day elaboration of the Estes stimulus-sampling

model; rather than relying on random drift, it maintains a gradually changing ‘context vector’ of

recent stimulus history that gets bound to stimulus vectors through Hebbian learning. The context

vector can be used to cue retrieval of stimuli from memory (as in free recall tasks), which in turn

causes the reinstatement of context bound to the retrieved stimuli. One way to view our latent cause

theory is as a particular rationalization of retrieved context models like TCM: the ‘context’ represen-

tation corresponds to the posterior over latent causes, retrieving context corresponds to inferring a

latent cause, and updating the stimulus-context associations corresponds to updating the sufficient

statistics of the posterior (i.e., structure learning). Indeed, precisely this correspondence was made

by Socher et al. (2009), where a latent cause model of text corpora was used as the underlying

internal model for word lists.

The latent cause model extends TCM by positing additional constraints on context drift. For

example, in the latent cause model, the diagnosticity of sensory observations matters: a sensory

observation that is highly diagnostic of a change in latent causes could have a very large effect on

the posterior probabilities that the agent assigns to latent causes (and thus its ‘context’, if we con-

sider latent causes to be coextensive with context). TCM in its original form does not incorporate

any notion of diagnosticity—it merely computes a running average of sensory observations and

retrieved contextual information. Bayesian versions of TCM, such as the one developed by

Socher et al. (2009), could potentially capture effects of diagnosticity, although such effects have

not yet been systematically investigated.

Connecting our theoretical work with retrieved context models like TCM allows us to make con-

tact with a relevant segment of the human episodic memory literature studying post-retrieval mem-

ory modification (Chan et al., 2009; Chan and LaPaglia, 2013; Forcato et al., 2007,

2010; Hupbach et al., 2007, 2009). In one line of research developed by Hupbach and colleagues,

the researchers used a list-learning paradigm to show that reminding participants of one list (A)

shortly before asking them to study a second list (B) produced an asymmetric pattern of intrusions at

test: participants intruded a large number of items from list B when asked to recall list A, but not

vice versa (Hupbach et al., 2007). When no reminder was given, participants showed an overall low

level of intrusions across list A and list B recall.

One interpretation of these findings, in line with reconsolidation accounts of memory modifica-

tion, is that the reminder caused the memory of list A to become labile, thereby allowing list B items

to become incorporated into the list A memory. However, Sederberg et al. (2011) showed that the

findings of Hupbach and colleagues could be accounted for by TCM (see also Gershman et al.,

2013c for converging neural evidence), further suggesting that retrieved context models are rele-

vant to understanding post-retrieval memory modification, but more work is needed to flesh out the

correspondences sketched here. Briefly, a latent cause theory might be able to account for the Hup-

bach results if one assumes that a latent cause associated with list A is retrieved at at the beginning

of list B (analogous to the retrieval of the list A temporal context).

Consolidation and reconsolidation
In developing our theory of memory modification, we have studiously avoided the term ‘reconsolida-

tion’ that appears ubiquitously throughout the literature we have modeled. Reconsolidation, like

many concepts in the study of learning, has a dual meaning as both a set of empirical phenomena

and as a theoretical hypothesis about the nature of those phenomena (Rudy et al., 2006). The theo-

retical hypothesis is derived from the idea that newly formed memories are initially labile (sensitive

to disruption or modification), but over time undergo a protein synthesis-dependent ‘consolidation’

process that converts them into a stable molecular format largely resistant to disruption

(McGaugh, 1966, 2000). Here we are specifically discussing ‘synaptic consolidation’ that unfolds

Gershman et al. eLife 2017;6:e23763. DOI: 10.7554/eLife.23763 30 of 41

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.23763


over seconds to minutes, in contrast to the ‘systems consolidation’ that unfolds over days to months

and is hypothesized to involve the transfer of memory from hippocampus to neocortex

(Dudai, 2012). The discovery that post-retrieval PSI administration was effective at disrupting mem-

ory long outside the consolidation window (Nader et al., 2000) inspired the idea that memory

retrieval renders memory once again labile, requiring a second phase of consolidation (named

‘reconsolidation’) to stabilize the memory. Like initial consolidation, reconsolidation requires protein

synthesis, explaining why PSIs disrupt memory stabilization.

We have avoided this terminology for several reasons. First, our theory is formulated at a level of

abstraction that does not require commitment to a particular model of synaptic consolidation or

reconsolidation. The process by which a memory becomes progressively resistant to disruption can be

modeled in various ways (e.g., Fusi et al., 2005; Clopath et al., 2008; Ziegler et al., 2015), and it is

currently unclear to what extent these biological mechanisms are consistent with normative models of

learning (see Gershman, 2014, for one attempt at connecting the levels of analysis Gershman, 2014).

In particular, our theory does not incorporate an explicit consolidation process; increased resistance to

disruption as a function of time arises from the contiguity principle, which implies that beliefs about a

latent cause are less likely to be modified by new experience if a long interval has elapsed since the

latent cause was believed to be active. Similarly, we do not explicitly model reconsolidation; post-

retrieval lability arises from the increased probability that an old latent cause is active once again.

A second reason we have avoided the consolidation/reconsolidation terminology is that the

underlying theoretical claims face longstanding difficulties. Most theories of synaptic consolidation

assume that amnestic agents like PSIs degrade the memory engram, and the post-learning (or post-

retrieval) consolidation window reflects a period of time during which the trace is vulnerable to deg-

radation. However, as a number of authors have pointed out (Miller and Springer, 1973,

2006; Lewis, 1979), amnesia could alternatively arise through disrupted memory retrieval. In other

words, the amnestic agent might make a memory harder to retrieve, while sparing the engram. This

retrieval-oriented view is consistent with the observation that pre-test reminders (e.g., the US or

training context) can cause recovery from amnesia (Lewis et al., 1968b; Miller and Springer, 1972;

Quartermain et al., 1972). Another difficulty facing consolidation theory is that the putative consoli-

dation window could be reduced to less than 500 msec (far shorter than the hypothesized speed of

synaptic consolidation) if animals were familiarized with the learning environment (Lewis et al.,

1968a, 1969; Miller, 1970).

These difficulties inspired a family of retrieval-oriented theories that contrast starkly with storage-

oriented consolidation theories (see Miller and Matzel, 2006; Riccio et al., 2006 for recent reviews).

In an influential paper, Lewis et al. (1968b) argued that experimental amnesia results from the

impairment of a retrieval pathway rendered labile by reminders. Importantly, this impairment is tem-

porary: a sufficiently salient reminder can activate the impaired retrieval pathway or possibly estab-

lish a new retrieval pathway. This idea is compatible with the stimulus sampling framework described

in the previous section, where retrieval cues both activate prior memory traces and contribute new

stimulus elements to the trace. Another retrieval-oriented theory, advocated by Riccio and col-

leagues (Millin et al., 2001; Riccio et al., 2006), views experimental amnesia as a state-dependent

retrieval impairment. Specifically, the animal’s physiological state is a powerful retrieval cue, so by

testing animals in the absence of the amnestic agent (hence in a different physiological state), typical

experimental amnesia experiments induce an encoding-retrieval mismatch (Spear, 1973;

Tulving and Thomson, 1973). This idea lead to the counterintuitive prediction, subsequently con-

firmed, that administration of amnestic agents prior to test would reinstate the impaired memory

(Gisquet-Verrier et al., 2015; Hinderliter et al., 1975).

The difficulties facing consolidation theory do not necessarily pose problems for our theory, and

indeed we showed that our theory predicts the transience of experimental amnesia as well as the

reminder effect of pre-test PSI administration. Nonetheless, we see merit in both encoding-oriented

and retrieval-oriented theories, since our theory asserts critical roles for both encoding and retrieval

processes. In our simulations, we have shown that manipulations can affect both the strength of the

CS-US association and also the probability of retrieving that association.

Conclusion
One challenge to developing a unified theory of memory modification is that some of the basic facts

are still disputed. Some authors have found that Pavlovian contextual fear memories become labile
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after retrieval (Debiec et al., 2002), while others have not (Biedenkapp and Rudy, 2004), and yet

others argue that memory modification is transient (Frankland et al., 2006; Power et al., 2006). A

similar situation exists for instrumental memories: some studies have shown that instrumental memo-

ries undergo post-retrieval modification (Fuchs et al., 2009; Milton et al., 2008), while others have

not (Hernandez and Kelley, 2004). The literature on post-retrieval modification of human proce-

dural memories has also been recently thrown into doubt (Hardwicke et al., 2016). There are many

differences between these studies that could account for such discrepancies, including the type of

amnestic agent, how the amnestic agent is administered (systemically or locally), the type of rein-

forcer, and the timing of stimuli. Despite these ambiguities, we have described a number of regulari-

ties in the literature and how they can be accounted for by a latent cause theory of conditioning.

The theory offers a unifying normative account of memory modification that links learning and mem-

ory from first principles.

Materials and methods
In this section, we provide the mathematical and implementational details of our model. Code is

available at Gershman, 2017, https://github.com/sjgershm/memory-modification (with a copy

archived at https://github.com/elifesciences-publications/memory-modification).

The expectation-maximization algorithm
The EM algorithm, first introduced by Dempster et al. (1977), is a method for performing maxi-

mum-likelihood parameter estimation in latent variable models. In our model, the latent variables

correspond to the vector of latent cause assignments, z1:t, the parameters correspond to the associa-

tive weights, W, and the data correspond to the CS-US history, D1:t ¼ fX1:t; r1:tg, where X1:t ¼

fx1; . . . ;xtg and r1:t ¼ fr1; . . . ; rtg. Let Qðz1:tÞ be a distribution over z1:t. The EM algorithm can be

understood as performing coordinate ascent on the functional

FðW;QÞ ¼
X

z1:t

Qðz1:tjD1:tÞ logPðz1:t;D1:t jWÞ

¼
X

z1:t

Qðz1:tjD1:tÞ log PðD1:t jz1:t ;WÞPðz1:tÞ½ �:

By Jensen’s inequality, this functional is a lower bound on the log marginal likelihood of the data,

logPðD1:tjWÞ ¼ log
P

z1:t
PðD1:t;z1:tjWÞ, which means that maximizing F corresponds to optimizing

the internal model to best predict the observed data (Neal and Hinton, 1998).

The EM algorithm alternates between maximizing FðW;QÞ with respect to W and Q. Letting n

indicate the iteration,

E-step :Qnþ1 Qargmax FðWn;QÞ

M-step :Wnþ1 
W

argmax FðW;Qnþ1Þ

Alternating the E and M steps repeatedly, FðW;QÞ is guaranteed to converge to a local maxi-

mum (Neal and Hinton, 1998). It can also be shown that FðW;QÞ is maximized with respect to

Qðz1:tÞ when Q¼ Pðz1:t jD1:t;WÞ. Thus, the optimal E-step is exact Bayesian inference over the latent

variables z1:t.

There are two challenges facing a biologically and psychologically plausible implementation of

this algorithm. First, the E-step is intractable, since it requires summing over an exponentially large

number of possible latent cause assignments. Second, both steps involve computations operating

on the entire history of observations, whereas a more plausible algorithm is one that operates online,

one observation at a time (Anderson, 1990). Below we summarize an approximate, online form of

the algorithm. To reduce notational clutter, we drop the n superscript (indicating EM iteration), and

implicitly condition on W.

The E-step: structure learning
The E-step corresponds to calculating the posterior using Bayes’ rule:
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qtk ¼ Pðzt ¼ kjD1:tÞ ¼

P

z1:t�1
PðDtjzt ¼ k;D1:t�1ÞPðzt ¼ kjz1:t�1Þ

P

j

P

z1:t�1
PðDt jzt ¼ j;D1:t�1ÞPðzt ¼ jjz1:t�1Þ

: (13)

Note that the number of terms in the summation over z1:t�1 grows exponentially over time; conse-

quently, calculating the posterior exactly is intractable. Following (Anderson, 1991), we use a ‘local’

maximum a posteriori (MAP) approximation see for more discussion (Sanborn et al., 2010):

qtk »
PðDt jzt ¼ k; ẑ1:t�1;D1:t�1ÞPðzt ¼ kjẑ1:t�1Þ

P

jPðDtjzt ¼ j; ẑ1:t�1;D1:t�1ÞPðzt ¼ jjẑ1:t�1Þ
; (14)

where ẑ1:t�1 is defined recursively according to:

ẑt ¼
k

argmax PðDt jzt ¼ k; ẑ1:t�1;D1:t�1ÞPðzt ¼ kjẑ1:t�1Þ: (15)

In other words, the local MAP approximation is obtained by replacing the summation over parti-

tions with the sequence of conditionally optimal cluster assignments. Although this is not guaranteed

to arrive at the globally optimal partition (i.e., the partition maximizing the posterior over all time-

points), in our simulations it tends to produce very similar solutions to more elaborate approxima-

tions like particle filtering (Gershman and Niv, 2010; Sanborn et al., 2010). The local MAP

approximation has also been investigated in the statistical literature. Wang and Dunson (2011)

found that it compares favorably to fully Bayesian inference, while being substantially faster.

The first term in Equation 15 (the likelihood) is derived using standard results in Bayesian statis-

tics (Bishop, 2006):

PðDtjzt ¼ k; ẑ1:t�1;D1:t�1Þ ¼N ðrt; r̂tk;s
2

r Þ
Y

D

d¼1

Nðxtd; x̂tkd;n
2

tkÞ; (16)

where

r̂tk ¼
X

D

d¼1

xtdwkd (17)

x̂tkd ¼
Ntk�xtkd
Ntk þs2

x

(18)

n2tk ¼
s2

x

Ntk þs2
x

þs2

x : (19)

Here Ntk denotes the number of times zt ¼ k for t < t and �xtkd denotes the average cue values for

observations assigned to cause k for t<t. The second term in Equation 15 (the prior) is given by the

time-sensitive Chinese restaurant process (Equation 3).

The M-step: sssociative learning
The M-step is derived by differentiating F with respect to W and then taking a gradient step to

increase the lower bound. This corresponds to a form of stochastic gradient ascent, and is in fact

remarkably similar to the Rescorla-Wagner learning rule (see below). Its main departure lies in the

way it allows the weights to be modulated by a potentially infinite set of latent causes. Because

these latent causes are unknown, the animal represents an approximate distribution over causes, q

(computed in the E-step). The components of the gradient are given by:

½rF�kd ¼ s�2r xtddtk; (20)

where dtk is given by Equation 7. To make the similarity to the Rescorla-Wagner model clearer, we

absorb the s�2r factor into the learning rate, h.

Simulation parameters
With two exceptions, we used the following parameter values in all the simulations:

a ¼ 0:1;h ¼ 0:3;s2

r ¼ 0:4;s2

x ¼ 1; � ¼ 0:02; l ¼ 0:01. For modeling the retrieval-extinction data, we

treated � and l as free parameters, which we fit using least-squares. For simulations of the human
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data in Figure 13, we used � ¼ 0:0016 and l ¼ 0:00008. Note that � and l change only the scaling of

the predictions, not their direction; all ordinal relationships are preserved.

The CS was modeled as a unit impulse: xtd ¼ 1 when the CS is present and 0 otherwise (similarly

for the US). Intervals of 24 hr were modeled as 20 time units; intervals of one month were modeled

as 200 time units. While the choice of time unit was somewhat arbitrary, our results do not depend

strongly on these particular values.

Relationship to the Rescorla-Wagner model
In this section we demonstrate a formal correspondence between the classic Rescorla-Wagner model

and our model. In the Rescorla-Wagner model, the outcome prediction r̂t is, as in our model, param-

eterized by a linear combinations of the cues xt and is updated according to the prediction error:

r̂t ¼
X

D

d¼1

wdxtd (21)

dt ¼ rt � r̂t (22)

w wþhxtdt : (23)

The key difference is that in our model, we allow there to be separate weight vectors for each

latent cause. When a¼ 0, the distribution over latent causes reduces to a delta function at a single

cause (since the probability of inferring new latent causes is always 0), and hence there is only a sin-

gle weight vector. In this case, the two models coincide.
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